AMERICAN JOURNAL OF MEDICAL GENETICS PART A, cilt.185, sa.1, ss.90-96, 2021 (SCI-Expanded)
Genetic diseases are a major cause of neonatal morbidity and mortality. The clinical differential diagnosis in severely ill neonates, especially in premature infants, is challenging. Next generation sequencing (NGS) diagnostics is a valuable tool, but the turnaround time is often too long to provide a diagnosis in the time needed for clinical guidance in newborn intensive care units (NICU). To minimize turnaround time, we developed an ultra-rapid whole genome sequencing pipeline and tested it in clinical practice. Our pilot case, was a preterm infant presenting with several crises of dehydration, hypoglycaemia and hyponatremia together with nephrocalcinosis and hypertrophic cardiomyopathy. Whole genome sequencing was performed using a paired-end 2x75bp protocol. Sequencing data were exported after 50 sequencing cycles for a first analysis. After run completion, the rapid-sequencing protocol, a second analysis of the 2 x 75 paired-end run was performed. Both analyses comprised read-mapping and SNP-/indel calling on an on-site Edico Genome DRAGEN server, followed by functional annotation and pathogenicity prediction using in-house scripts. After the first analysis within 17 h, the emergency ultra-rapid protocol identified twonovelcompound heterozygous variants in the insulin receptor gene (INSR), pathogenic variants in which cause Donohue Syndrome. The genetic diagnosis could be confirmed by detection of hyperinsulinism and patient care adjusted. Nonetheless, we decided to pursue RNA studies, proving the functional effect of thenovelsplice variant and reduced expression levels ofINSRin patients skin fibroblasts.