Poly(3-hexylthiophene) stabilized ultrafine nickel oxide nanoparticles as superior electrocatalyst for oxygen evolution reaction: Catalyst design through synergistic combination of pi-conjugated polymers and metal-based nanoparticles


Iftikhar S., Aslam S., Duran H., Citoglu S., Kirchhoff K., Lieberwirth I., ...Daha Fazla

JOURNAL OF APPLIED POLYMER SCIENCE, cilt.139, sa.29, 2022 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 139 Sayı: 29
  • Basım Tarihi: 2022
  • Doi Numarası: 10.1002/app.52636
  • Dergi Adı: JOURNAL OF APPLIED POLYMER SCIENCE
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, PASCAL, Aerospace Database, Applied Science & Technology Source, Biotechnology Research Abstracts, Chemical Abstracts Core, Chimica, Communication Abstracts, Compendex, INSPEC, Metadex, Civil Engineering Abstracts
  • Anahtar Kelimeler: catalysts, composites, conducting polymers, electrochemistry, optical properties, GOLD NANOPARTICLES, REDUCTION, SIZE, NI, MECHANISM, EXCHANGE, TIO2
  • Acıbadem Mehmet Ali Aydınlar Üniversitesi Adresli: Evet

Özet

We report the synthesis and electrocatalytic activity of poly(3-hexylthiophene) stabilized nickel oxide nanoparticles (P3HT@NiO NPs). Employing semiconducting P3HT as a stabilizing agent produced well dispersed P3HT@NiO NPs with uniform size distribution (2.5 +/- 1.2 nm). For comparison, NiO NPs stabilized with the small molecule 3-hexylthiophene (3HT@NiO NPs) were also synthesized and characterized as reference material. The physiochemical properties of the developed hybrid P3HT@NiO were fully characterized using UV/Vis absorption spectroscopy, fluorescence spectroscopy, high resolution transmission electron microscopy (HRTEM) and X-ray photoelectron spectroscopy (XPS). The electrocatalytic activities of the developed semiconducting polymer-stabilized NPs were evaluated for the oxygen evolution reaction (OER) of water splitting. Our work reveals the electronic communication between P3HT and NiO NPs and demonstrates that P3HT@NiO NPs exhibit superior catalytic activity with an overpotential of 310 mV when compared to the reference 3HT@NiO NPs which exhibited an overpotential 560 mV. These results suggest that the heteroatom-containing pi-conjugated semiconducting polymers can be employed as electrocatalytic performance enhancing and stabilizing ligands for the synthesis of ultrafine metal-based NPs as efficient electrocatalytic platforms.