Photodynamic inactivation of Staphylococcus aureus using tetraethylene glycol-substituted Zn(II) phthalocyanine


Mete E., Kabay N., DUMOULIN F., Ahsen V., Kostakoglu S. T., Ergin C.

BIOTECHNIC & HISTOCHEMISTRY, cilt.96, sa.4, ss.311-314, 2021 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 96 Sayı: 4
  • Basım Tarihi: 2021
  • Doi Numarası: 10.1080/10520295.2020.1854855
  • Dergi Adı: BIOTECHNIC & HISTOCHEMISTRY
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, BIOSIS, Biotechnology Research Abstracts, CAB Abstracts, EMBASE, Food Science & Technology Abstracts, MEDLINE, Veterinary Science Database
  • Sayfa Sayıları: ss.311-314
  • Acıbadem Mehmet Ali Aydınlar Üniversitesi Adresli: Hayır

Özet

Methicillin resistant Staphylococcus aureus infections are increasing, especially in intensive care units. A new method for photodynamic inactivation (PDI) generates reactive oxygen species by photosensitization to kill bacteria. We investigated the PDI effect of tetraethylene glycol-substituted Zn(II) phthalocyanine (TEG-P) on S. aureus strains including two standards (ATCC 25923 and ATCC 43400) and 20 clinically isolated methicillin sensitive and 20 methicillin resistance strains. We also investigated three treated groups: 650 nm laser only, TEG-P only and TEG-P + laser, plus one control group. Treatments included 0.5, 1, 2, 4, 8, 16, 32 mu g/ml concentrations of TEG-P. No suppression of bacterial growth was observed in the control, laser only and TEG-P only groups whether or not S. aureus was methicillin resistant. Bacterial growth was suppressed by 85% using 8 mu g/ml TEG-P and completely suppressed by 32 mu g/ml TEG-P in the TEG-P + laser group. A combination of TEG-P + laser treatment may be an alternative to conventional antibiotics for routine treatment of S. aureus infections, although further investigation of the effect at the tissue level is required.