Predicting intra-operative and postoperative consequential events using machine-learning techniques in patients undergoing robot-assisted partial nephrectomy: a Vattikuti Collective Quality Initiative database study.


Bhandari M., Nallabasannagari A. R., Reddiboina M., Porter J. R., Jeong W., Mottrie A., ...Daha Fazla

BJU international, cilt.126, ss.350-358, 2020 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 126
  • Basım Tarihi: 2020
  • Doi Numarası: 10.1111/bju.15087
  • Dergi Adı: BJU international
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, PASCAL, BIOSIS, CAB Abstracts, EMBASE, Gender Studies Database, MEDLINE, Public Affairs Index
  • Sayfa Sayıları: ss.350-358
  • Anahtar Kelimeler: deep learning, intra-operative complications, machine learning, postoperative complications, postoperative morbidity, robot-assisted partial nephrectomy, LENGTH-OF-STAY, TUMOR SCORING SYSTEMS, PERIOPERATIVE COMPLICATIONS, ARTIFICIAL-INTELLIGENCE, RACIAL DISPARITIES, HOSPITAL VOLUME, IMPACT
  • Acıbadem Mehmet Ali Aydınlar Üniversitesi Adresli: Evet

Özet

Objective To predict intra-operative (IOEs) and postoperative events (POEs) consequential to the derailment of the ideal clinical course of patient recovery.