PHARMACOLOGY BIOCHEMISTRY AND BEHAVIOR, cilt.234, 2024 (SCI-Expanded)
There is accumulating evidence supporting the involvement of tissue-plasminogen activator (tPA) in the mechanisms underlying the effects of morphine and an enriched environment. This study was designed to investigate possible interactive roles of the glutamatergic and the dopaminergic systems regarding hippocampal tPA in the neurobiology of morphine dependence. For this purpose, Wistar albino rats, housed in either a standard- (SE) or an enriched environment (EE) were implanted subcutaneously with morphine (150 mg base) or placebo pellets. Behavioral and somatic signs of morphine abstinence precipitated by an opioid-receptor antagonist naloxone (1 mg/kg, i.p.) 72 h after the pellet implantation were observed individually for 15 min in all groups. Memantine (10 mg/kg i.p.), an antagonist of N-methyl-D-aspartic acid class of glutamatergic receptor-subtype decreased teeth-chattering, ptosis, diarrhea and the loss of body weight. SKF82958 (1 mg/kg, i. p.), a dopamine D1-receptor agonist decreased jumping and ptosis but increased rearing and loss of body weight. On the other hand, co-administration of SKF82958 with memantine prevented some of their effects that occur when administered alone at the same doses. Furthermore, the EE did not change the intensity of morphine abstinence. The level of hippocampal tPA mRNA was found to be lower in the SE morphine abstinence group than in the placebo group and close to the EE morphine abstinence group, whereas there was no significant alteration of its level in the memantine or SKF82958 groups. These findings suggest that the interaction between the glutamatergic and the dopaminergic systems may be an important component of the neurobiology of morphine dependence, and the role of tPA in this interaction should be further investigated.