A Stability Study by Routh-Hurwitz Criterion and Gershgorin Circles for Covid-19


Akyar B., Hansen A. K., Sutlu S.

MODELING IDENTIFICATION AND CONTROL, cilt.45, sa.3, ss.97-103, 2024 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 45 Sayı: 3
  • Basım Tarihi: 2024
  • Doi Numarası: 10.4173/mic.2024.3.2
  • Dergi Adı: MODELING IDENTIFICATION AND CONTROL
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Aerospace Database, Applied Science & Technology Source, Compendex, Computer & Applied Sciences, INSPEC, zbMATH, Directory of Open Access Journals, Civil Engineering Abstracts
  • Sayfa Sayıları: ss.97-103
  • Acıbadem Mehmet Ali Aydınlar Üniversitesi Adresli: Hayır

Özet

In this paper, we study stabilization problem on a model for covid-19 by using Routh-Hurwitz criterion and Gershgorin circles. Using Routh-Hurwitz criterion, we prove the necessity of unstability and stability conditions for the model that we extend from an existing one. We give the necessary conditions for stability on this model by using the Gershgorin Circle Theorem and give examples.