Hypothesis: Could Hepatitis B vaccine act as an immune adjuvant in glioblastoma? Clues to conduct further epidemiological analyses

Altinoz M., Ozpinar A., Ozpinar A., Hacker E., Elmaci I.

INTERNATIONAL IMMUNOPHARMACOLOGY, vol.81, 2020 (SCI-Expanded) identifier identifier identifier


A failure of neurodevelopmental differentiation at the level of oligodendroglial-astrocytic biprogenitors (O2A) is shown to be involved in the pathogenesis of both multiple sclerosis (MS) and glioblastoma multiforme (GBM). In this review article, we suggest that certain antigens of Hepatitis B Virus (HBV) and HBV-Vaccine (HBV-V) could act as immune stimulants in GBM treatment based on several lines of evidence. HBV-Vs may cause rare but prominent neuroimmune side effects including demyelination and multiple sclerosis, which may be associated with HBV-proteins creating antigenic mimicry of oligodendroglial progenitors. The combined prevalance of HBV and Hepatitis C Virus-carrier state is less in patients with brain tumors compared to healthy subjects. Furthermore, within the population of patients with brain tumors, the prevalence is even about two times lesser in GBM in comparison to those with a diagnosis of meningioma. Although indirectly, this epidemiological data may indicate that the immune response triggered against hepadnavirus antigens would eliminate aberrantly differentiating O2A progenitor cells giving rise to GBMs. Moreover, Hepatitis B surface antigen-antibody variable domain is among the top 100 differentially expressed transcripts in fresh frozen and formalin-fixed paraffin-embeded specimens obtained from pediatric GBM tissues in comparison to the control brain tissues. However, the provided evidence is still premature and we think that HBV-V warrants investigation first by epidemiological studies and then by animal experiments to determine whether it reduces the risk of GBM and whether it could slow GBM growth via immune stimulation.