Susceptibility-Weighted MRI for Predicting NF-2 Mutations and S100 Protein Expression in Meningiomas


Azamat S., Buz-Yalug B., Dindar S. S., Yilmaz Tan K., Ozcan A., CAN Ö., ...Daha Fazla

DIAGNOSTICS, cilt.14, sa.7, 2024 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 14 Sayı: 7
  • Basım Tarihi: 2024
  • Doi Numarası: 10.3390/diagnostics14070748
  • Dergi Adı: DIAGNOSTICS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, EMBASE, INSPEC, Directory of Open Access Journals
  • Acıbadem Mehmet Ali Aydınlar Üniversitesi Adresli: Evet

Özet

S100 protein expression levels and neurofibromatosis type 2 (NF-2) mutations result in different disease courses in meningiomas. This study aimed to investigate non-invasive biomarkers of NF-2 copy number loss and S100 protein expression in meningiomas using morphological, radiomics, and deep learning-based features of susceptibility-weighted MRI (SWI). This retrospective study included 99 patients with S100 protein expression data and 92 patients with NF-2 copy number loss information. Preoperative cranial MRI was conducted using a 3T clinical MR scanner. Tumor volumes were segmented on fluid-attenuated inversion recovery (FLAIR) and subsequent registration of FLAIR to high-resolution SWI was performed. First-order textural features of SWI were extracted and assessed using Pyradiomics. Morphological features, including the tumor growth pattern, peritumoral edema, sinus invasion, hyperostosis, bone destruction, and intratumoral calcification, were semi-quantitatively assessed. Mann-Whitney U tests were utilized to assess the differences in the SWI features of meningiomas with and without S100 protein expression or NF-2 copy number loss. A logistic regression analysis was used to examine the relationship between these features and the respective subgroups. Additionally, a convolutional neural network (CNN) was used to extract hierarchical features of SWI, which were subsequently employed in a light gradient boosting machine classifier to predict the NF-2 copy number loss and S100 protein expression. NF-2 copy number loss was associated with a higher risk of developing high-grade tumors. Additionally, elevated signal intensity and a decrease in entropy within the tumoral region on SWI were observed in meningiomas with S100 protein expression. On the other hand, NF-2 copy number loss was associated with lower SWI signal intensity, a growth pattern described as "en plaque", and the presence of calcification within the tumor. The logistic regression model achieved an accuracy of 0.59 for predicting NF-2 copy number loss and an accuracy of 0.70 for identifying S100 protein expression. Deep learning features demonstrated a strong predictive capability for S100 protein expression (AUC = 0.85 +/- 0.06) and had reasonable success in identifying NF-2 copy number loss (AUC = 0.74 +/- 0.05). In conclusion, SWI showed promise in identifying NF-2 copy number loss and S100 protein expression by revealing neovascularization and microcalcification characteristics in meningiomas.