RHEUMATOLOGY, sa.9, ss.3188-3196, 2023 (SCI-Expanded)
Objective The presence of FMF cases without MEFV (MEFV innate immunity regulator, pyrin) pathogenic variants led us to search for other genes' involvement in the disease development. Here, we describe the presence of genetic heterogeneity in a three-generation family with an FMF/mevalonate kinase deficiency (MKD)-overlapping phenotype without MEFV/MVK (mevalonate kinase) pathogenic variants. Method Targeted sequencing revealed a rare, fully penetrant variant in PSTPIP1 (p.Arg228Cys, rs781341816). Computational stability analyses of PSTPIP1 protein were performed. PSTPIP1-pyrin protein interaction was examined by immunoprecipitation and immunoblotting in peripheral blood mononuclear cells (PBMCs) of patients and healthy controls. PBMCs were cultured, and inflammation was induced by LPS+ATP treatment, followed by protein level measurements of caspase-1, IL1ss, pyrin and PSTPIP1 in cell lysates and mature caspase-1 and mature IL1ss in supernatants. Results The conserved, rare (GnomAD, 0.000028) PSTPIP1 p.Arg228Cys variant, previously reported in ClinVar as a variant with uncertain significance, showed complete penetrance in the family presenting an autosomal dominant pattern. Computational analyses showed a potentially destabilizing effect of the variant on PSTPIP1 protein. Accordingly, PSTPIP1-pyrin interaction was increased in patients harboring the variant, which resulted in elevated levels of mature caspase-1 and IL1ss in the inflammation-induced patient samples. Conclusions Unlike previously described cases with pyogenic arthritis, pyoderma gangrenosum, and acne (PAPA)-associated PSTPIP1 variants, our patients with the p.Arg228Cys variant presented with an FMF/MKD-overlapping phenotype. As additional data on the genetic heterogeneity in the variable clinical spectrum of autoinflammatory syndromes, we suggest that the p.Arg228Cys variant in PSTPIP1 is related to inflammation responses through strong PSTPIP1-pyrin interaction and pyrin inflammasome activation.