The Vroman effect: Competitive protein exchange with dynamic multilayer protein aggregates


Hirsh S. L., McKenzie D. R., Nosworthy N. J., Denman J. A., Sezerman O. U., Bilek M. M. M.

COLLOIDS AND SURFACES B-BIOINTERFACES, cilt.103, ss.395-404, 2013 (SCI-Expanded) identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 103
  • Basım Tarihi: 2013
  • Doi Numarası: 10.1016/j.colsurfb.2012.10.039
  • Dergi Adı: COLLOIDS AND SURFACES B-BIOINTERFACES
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.395-404
  • Anahtar Kelimeler: Protein immobilization, Vroman effect, Cellulase, Atomic force microscopy, ION MASS-SPECTROMETRY, ADSORBED PROTEINS, TOF-SIMS, ADSORPTION, FIBRINOGEN, PLASMA, FILMS, PROTEOMICS, ALBUMIN, IDENTIFICATION
  • Acıbadem Mehmet Ali Aydınlar Üniversitesi Adresli: Hayır

Özet

The surface immobilization of proteins is an emerging field with applications in a wide range of important areas: biomedical devices, disease diagnosis, biosensing, food processing, biofouling, and bioreactors. Proteins, in Nature, often work synergistically, as in the important enzyme mixture, cellulase. It is necessary to preserve these synergies when utilizing surface immobilized proteins. However, the competitive displacement of earlier adsorbed proteins by other proteins with stronger binding affinities (the "Vroman effect") results in undesired layer instabilities that are difficult to control. Although this nanoscale phenomenon has been extensively studied over the last 40 years, the process through which this competitive exchange occurs is not well understood. This paper uses atomic force microscopy, QCM-D, TOF-SIMS, and in-solution TOF-MS to show that this competitive exchange process can occur through the turning of multilayer protein aggregates. This dynamic process is consistent with earlier postulated "transient complex" models, in which the exchange occurs in three stages: an initial layer adsorbs, another protein layer then embeds itself into the initial layer, forming a "transient complex:" the complex "turns," exposing the first layer to solution; proteins from the first layer desorb resulting in a final adsorbed protein composition that is enriched in proteins from the second layer. (C) 2012 Elsevier B.V. All rights reserved.