Pain decoding under analgesic conditions using functional near infrared spectroscopy and transfer learning


Eken A., Erdoğan S. B., Yukselen G., Şanlı S., Yardımcı H. E., Özger İ., ...Daha Fazla

1st National Neuroimaging Congress & 2nd Joint German-Turkish Symposium on Human Neuroscience, Ankara, Türkiye, 7 - 09 Eylül 2023, ss.11-12, (Özet Bildiri)

  • Yayın Türü: Bildiri / Özet Bildiri
  • Basıldığı Şehir: Ankara
  • Basıldığı Ülke: Türkiye
  • Sayfa Sayıları: ss.11-12
  • Acıbadem Mehmet Ali Aydınlar Üniversitesi Adresli: Evet

Özet

Objective: Pain decoding using hemodynamic responses is anobjective but challenging approach due to the variable natureof  hemodynamic  response.  Moreover,  the  effects  of  differentanalgesic conditions increase the complexity of this problem.Inthis study, we aimed to decode the intensity level of nocicep-tive  stimuli  under  analgesic  conditions  by  utilizing  fNIRSderived  hemodynamic  responses  and  a  deep  transfer  learningapproach.

Methods: A previously collected fNIRS dataset collected from14  healthy  male  volunteers  was  utilized.  Each  subject  had  twosite visits where they were orally administered with a morphineor  a  placebo  pill.  At  each  site  visit,  subjects  had  4  fNIRS  scanswhich were taken during a nociceptive stimuli protocol a)beforeand b) after 30,60,90 minutes of drug administration. 6 noxiousand 6 innocuous stimuli were given to left thumb. After data pre-processing,  a  deep  learning  model  was  trained  on  the  pre-drugdataset  to  classify  painful  and  non-painful  stimuli.  Then,  theknowledge obtained in this model was then transferred to classi-fy post-drug dataset.

Results: Accuracy performance of the pre-drug model was 0.97.Accuracy of post morphine drug models were 0.91 after 30 min,0.90 after 60 min and 0.91, after 90 min. For placebo adminis-tration, they were found as 0.92 after 30 min, 0.92 after 60 min,0.91  after  90  min  respectively.  Statistical  comparison  of  per-formance metrics showed that accuracy values were significantlyhigher  in  pre-drug  models  compared  to  post-morphine  andpost-placebo models.

Conclusion: Our deep transfer learning approach showed thatknowledge  obtained  from  a  pre-drug  model  trained  by  usinghemodynamic  responses  can  be  used  to  decode  pain  level  afterdrug  administration.  We  demonstrate  the  potential  of  fNIRSderived  signals  for  transferring  information  from  a  modeltrained with baseline data to models built for different clinical ordaily life conditions where collection of training data may not befeasible/practical to build novel ML or DL models.