Transfer learning with multiomics integration and deep neural networks reveals drug resistance mechanisms in cancer


Alpsoy S., SEZERMAN O. U.

Scientific Reports, cilt.15, sa.1, 2025 (SCI-Expanded, Scopus) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 15 Sayı: 1
  • Basım Tarihi: 2025
  • Doi Numarası: 10.1038/s41598-025-23435-8
  • Dergi Adı: Scientific Reports
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, BIOSIS, Chemical Abstracts Core, MEDLINE, Directory of Open Access Journals
  • Anahtar Kelimeler: Deep neural networks, Drug resistance in cancer, Drug response prediction, Multi-omics integration, Transfer learning
  • Acıbadem Mehmet Ali Aydınlar Üniversitesi Adresli: Evet

Özet

Drug resistance remains one of the primary challenges in effective cancer therapy. In this study, we employed a deep neural network (DNN)-based transfer learning (TL) approach to predict drug response and uncover drug resistance mechanisms. We integrated gene expression, somatic mutation, and copy number aberration (CNA) data with drug response profiles using multi-omics integration (MI). We used the Genomics of Drug Sensitivity in Cancer (GDSC) data for training and incorporated drugs with same pathways into the training models. We then evaluated drug response predictions on independent in-vivo PDX Encyclopedia (PDX) and ex-vivo the Cancer Genome Atlas (TCGA) datasets. In addition, we conducted pathway enrichment analyses to elucidate the mechanisms underlying drug resistance for paclitaxel, 5-fluorouracil (5-FU), gemcitabine, and cetuximab. We also applied Fisher’s exact test (FET) to assess potential associations between drug resistance and the presence of mutations or CNAs. Our pan-drug models outperformed other methods based on the area under the precision-recall curve (AUCPR). Our pathway enrichment analyses revealed LDHB-mediated pyruvate metabolism and FYN-mediated focal adhesion might have pivotal roles in paclitaxel resistance, while PINK1-mediated mitophagy might be critical in 5-FU resistance. In addition to transcriptional activation, FET suggested that CNAs in LDHB and PINK1 may also be associated with resistance to paclitaxel and 5-FU, respectively. Furthermore, enrichment results for paclitaxel and cetuximab indicated shared resistance mechanisms between the two drugs. Importantly, our findings are consistent with prior experimental studies, providing literature-based validation of our results. Overall, our DNN-based TL approach achieved strong predictive performance across PDX & TCGA datasets and enrichment analyses provided valuable biological insights into drug resistance mechanisms.