New-generation biofilm effective antimicrobial peptides and a real-time anti-biofilm activity assay: CoMIC


Creative Commons License

Polat T., Soyhan İ., Cebeci S., İldeniz T. A. Ö., Gök Ö., Elmas M., ...Daha Fazla

APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, cilt.108, sa.1, 2024 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 108 Sayı: 1
  • Basım Tarihi: 2024
  • Doi Numarası: 10.1007/s00253-024-13134-1
  • Dergi Adı: APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, ABI/INFORM, Applied Science & Technology Source, Aqualine, Aquatic Science & Fisheries Abstracts (ASFA), BIOSIS, Biotechnology Research Abstracts, CAB Abstracts, Chemical Abstracts Core, Compendex, Computer & Applied Sciences, EMBASE, Environment Index, Food Science & Technology Abstracts, Geobase, MEDLINE, Pollution Abstracts, Veterinary Science Database
  • Acıbadem Mehmet Ali Aydınlar Üniversitesi Adresli: Evet

Özet

Nowadays, it is very important to produce new-generation drugs with antimicrobial properties that will target biofilm-induced infections. The first target for combating these microorganisms, which are the source itself. Antimicrobial peptides, which are more effective than antibiotics due to their ability to kill microorganisms and use a different metabolic pathway, are among the new options today. The aim of this study is to develop new-generation antibiotics that inhibit both biofilm-producing bacteria and the biofilm itself. For this purpose, we designed four different peptides by combining two amino acid forms (D- and L-) with the same sequence having alpha helix structures. It was found that the combined use of these two forms can increase antimicrobial efficacy more than 30-fold. These results are supported by molecular modeling and scanning electron microscopy (SEM), at the same time cytotoxicity (IC50) and hemotoxicity (HC50) values remained within the safe range. Furthermore, antibiofilm activities of these peptides were investigated. Since the existing biofilm inhibition methods in the literature do not technically simulate the exact situation, in this study, we have developed a real-time observable biofilm model and a new detection method based on it, which we call the CoMIC method. Findings have shown that the NET1 peptide with D-leucine amino acid in its structure and the NET3 peptide with D-arginine amino acid in its structure are effective in inhibiting biofilm. As a conclusion, our peptides can be considered as potential next-generation broad-spectrum antibiotic molecule/drug candidates that might be used in biofilm and clinical important bacteria. Key points center dot Antimicrobial peptides were developed to inhibit both biofilms producing bacteria and the biofilm itself. center dot CoMIC will fill a very crucial gap in understanding biofilms and conducting the necessary quantitative studies. center dot Molecular modelling studies, NET1 peptide molecules tends to move towards and adhere to the membrane within nanoseconds.