CSF Proteomics Identifies Specific and Shared Pathways for Multiple Sclerosis Clinical Subtypes


Creative Commons License

Avsar T., Durasi I. M., Uygunoglu U., Tutuncu M., Demirci N. O., Saip S., ...Daha Fazla

PLOS ONE, cilt.10, sa.5, 2015 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 10 Sayı: 5
  • Basım Tarihi: 2015
  • Doi Numarası: 10.1371/journal.pone.0122045
  • Dergi Adı: PLOS ONE
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Acıbadem Mehmet Ali Aydınlar Üniversitesi Adresli: Hayır

Özet

Multiple sclerosis (MS) is an immune-mediated, neuro-inflammatory, demyelinating and neurodegenerative disease of the central nervous system (CNS) with a heterogeneous clinical presentation and course. There is a remarkable phenotypic heterogeneity in MS, and the molecular mechanisms underlying it remain unknown. We aimed to investigate further the etiopathogenesis related molecular pathways in subclinical types of MS using proteomic and bioinformatics approaches in cerebrospinal fluids of patients with clinically isolated syndrome, relapsing remitting MS and progressive MS (n=179). Comparison of disease groups with controls revealed a total of 151 proteins that are differentially expressed in clinically different MS subtypes. KEGG analysis using PANOGA tool revealed the disease related pathways including aldosterone-regulated sodium reabsorption (p=8.02x10(-5)) which is important in the immune cell migration, renin-angiotensin (p=6.88x10(-5)) system that induces Th17 dependent immunity, notch signaling (p=1.83x10(-10)) pathway indicating the activated remyelination and vitamin digestion and absorption pathways (p=1.73x10(-5)). An emerging theme from our studies is that whilst all MS clinical forms share common biological pathways, there are also clinical subtypes specific and pathophysiology related pathways which may have further therapeutic implications.