Classification of Turkish and Balkan House Architectures Using Transfer Learning and Deep Learning


Yönder V. M., İpek E., Çetin T., Çavka H. B., Apaydın M. S., Doğan F.

Workshops hosted by the 22nd International Conference on Image Analysis and Processing, ICIAP 2023, Udine, İtalya, 11 - 15 Eylül 2023, cilt.14366, ss.398-408, (Tam Metin Bildiri) identifier

  • Yayın Türü: Bildiri / Tam Metin Bildiri
  • Cilt numarası: 14366
  • Doi Numarası: 10.1007/978-3-031-51026-7_34
  • Basıldığı Şehir: Udine
  • Basıldığı Ülke: İtalya
  • Sayfa Sayıları: ss.398-408
  • Anahtar Kelimeler: architectural classification, cnn, convnext, grad-cam, inception, resnet, transfer learning
  • Acıbadem Mehmet Ali Aydınlar Üniversitesi Adresli: Hayır

Özet

Classifying architectural structures is an important and challenging task that requires expertise. Convolutional Neural Networks (CNN), which are a type of deep learning (DL) approach, have shown successful results in computer vision applications when combined with transfer learning. In this study, we utilized CNN based models to classify regional houses from Anatolia and Balkans based on their architectural styles with various pretrained models using transfer learning. We prepared a dataset using various sources and employed data augmentation and mixup techniques to solve the limited data availability problem for certain regional houses to improve the classification performance. Our study resulted in a classifier that successfully distinguishes 15 architectural classes from Anatolia and Balkans. We explain our predictions using grad-cam methodology.