Biomarker Insights, cilt.19, 2024 (ESCI)
Background: Clinical biomarkers, allow better classification of patients according to their disease risk, prognosis, and/or response to treatment. Although affordable omics-based approaches have paved the way for quicker identification of putative biomarkers, validation of biomarkers is necessary for translation of discoveries into clinical application. Objective: Accordingly, in this study, we emphasize the potential of in silico approaches and have proposed and applied 3 novel sequential in silico pre-clinical validation steps to better identify the biomarkers that are truly desirable for clinical investment. Design: As protein biomarkers are becoming increasingly important in the clinic alongside other molecular biomarkers and lung cancer is the most common cause of cancer-related deaths, we used protein biomarkers for lung cancer as an illustrative example to apply our in silico pre-clinical validation approach. Methods: We collected the reported protein biomarkers for 3 cases (lung adenocarcinoma-LUAD, squamous cell carcinoma-LUSC, and unspecified lung cancer) and evaluated whether the protein biomarkers have cancer altering properties (i.e., act as tumor suppressors or oncoproteins and represent cancer hallmarks), are expressed in body fluids, and can be targeted by FDA-approved drugs. Results: We collected 3008 protein biomarkers for lung cancer, 1189 for LUAD, and 182 for LUSC. Of these protein biomarkers for lung cancer, LUAD, and LUSC, only 28, 25, and 6 protein biomarkers passed the 3 in silico pre-clinical validation steps examined, and of these, only 5 and 2 biomarkers were specific for lung cancer and LUAD, respectively. Conclusion: In this study, we applied our in silico pre-clinical validation approach the protein biomarkers for lung cancer cases. However, this approach can be applied and adapted to all cancer biomarkers. We believe that this approach will greatly facilitate the transition of cancer biomarkers into the clinical phase and offers great potential for future biomarker research.